Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

How Do Hyperedges Overlap in Real-World Hypergraphs? -- Patterns, Measures, and Generators (2101.07480v4)

Published 19 Jan 2021 in cs.SI

Abstract: Hypergraphs, a generalization of graphs, naturally represent groupwise relationships among multiple individuals or objects, which are common in many application areas, including web, bioinformatics, and social networks. The flexibility in the number of nodes in each hyperedge, which provides the expressiveness of hypergraphs, brings about structural differences between graphs and hypergraphs. Especially, the overlaps of hyperedges lead to complex high-order relations beyond pairwise relations, raising new questions that have not been considered in graphs: How do hyperedges overlap in real-world hypergraphs? Are there any pervasive characteristics? What underlying process can cause such patterns? In this work, we closely investigate thirteen real-world hypergraphs from various domains and share interesting observations of overlaps of hyperedges. To this end, we define principled measures and statistically compare the overlaps of hyperedges in real-world hypergraphs and those in null models. Additionally, based on the observations, we propose HyperLap, a realistic hypergraph generative model. HyperLap is (a) Realistic: it accurately reproduces overlapping patterns of real-world hypergraphs, (b) Automatically Fittable: its parameters can be tuned automatically using HyperLap+ to generate hypergraphs particularly similar to a given target hypergraph, (c) Scalable: it generates and fits a hypergraph with 0.7 billion hyperedges within a few hours.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube