Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

How Do Hyperedges Overlap in Real-World Hypergraphs? -- Patterns, Measures, and Generators (2101.07480v4)

Published 19 Jan 2021 in cs.SI

Abstract: Hypergraphs, a generalization of graphs, naturally represent groupwise relationships among multiple individuals or objects, which are common in many application areas, including web, bioinformatics, and social networks. The flexibility in the number of nodes in each hyperedge, which provides the expressiveness of hypergraphs, brings about structural differences between graphs and hypergraphs. Especially, the overlaps of hyperedges lead to complex high-order relations beyond pairwise relations, raising new questions that have not been considered in graphs: How do hyperedges overlap in real-world hypergraphs? Are there any pervasive characteristics? What underlying process can cause such patterns? In this work, we closely investigate thirteen real-world hypergraphs from various domains and share interesting observations of overlaps of hyperedges. To this end, we define principled measures and statistically compare the overlaps of hyperedges in real-world hypergraphs and those in null models. Additionally, based on the observations, we propose HyperLap, a realistic hypergraph generative model. HyperLap is (a) Realistic: it accurately reproduces overlapping patterns of real-world hypergraphs, (b) Automatically Fittable: its parameters can be tuned automatically using HyperLap+ to generate hypergraphs particularly similar to a given target hypergraph, (c) Scalable: it generates and fits a hypergraph with 0.7 billion hyperedges within a few hours.

Citations (50)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.