Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Centrality with Diversity (2101.07371v1)

Published 18 Jan 2021 in cs.SI

Abstract: Graph centrality measures use the structure of a network to quantify central or "important" nodes, with applications in web search, social media analysis, and graphical data mining generally. Traditional centrality measures such as the well known PageRank interpret a directed edge as a vote in favor of the importance of the linked node. We study the case where nodes may belong to diverse communities or interests and investigate centrality measures that can identify nodes that are simultaneously important to many such diverse communities. We propose a family of diverse centrality measures formed as fixed point solutions to a generalized nonlinear eigenvalue problem. Our measure can be efficiently computed on large graphs by iterated best response and we study its normative properties on both random graph models and real-world data. We find that we are consistently and efficiently able to identify the most important diverse nodes of a graph, that is, those that are simultaneously central to multiple communities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.