Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Guided parallelized stochastic gradient descent for delay compensation (2101.07259v1)

Published 17 Jan 2021 in cs.LG and cs.NE

Abstract: Stochastic gradient descent (SGD) algorithm and its variations have been effectively used to optimize neural network models. However, with the rapid growth of big data and deep learning, SGD is no longer the most suitable choice due to its natural behavior of sequential optimization of the error function. This has led to the development of parallel SGD algorithms, such as asynchronous SGD (ASGD) and synchronous SGD (SSGD) to train deep neural networks. However, it introduces a high variance due to the delay in parameter (weight) update. We address this delay in our proposed algorithm and try to minimize its impact. We employed guided SGD (gSGD) that encourages consistent examples to steer the convergence by compensating the unpredictable deviation caused by the delay. Its convergence rate is also similar to A/SSGD, however, some additional (parallel) processing is required to compensate for the delay. The experimental results demonstrate that our proposed approach has been able to mitigate the impact of delay for the quality of classification accuracy. The guided approach with SSGD clearly outperforms sequential SGD and even achieves the accuracy close to sequential SGD for some benchmark datasets.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)