Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multimodal Variational Autoencoders for Semi-Supervised Learning: In Defense of Product-of-Experts (2101.07240v2)

Published 18 Jan 2021 in cs.LG and cs.AI

Abstract: Multimodal generative models should be able to learn a meaningful latent representation that enables a coherent joint generation of all modalities (e.g., images and text). Many applications also require the ability to accurately sample modalities conditioned on observations of a subset of the modalities. Often not all modalities may be observed for all training data points, so semi-supervised learning should be possible. In this study, we propose a novel product-of-experts (PoE) based variational autoencoder that have these desired properties. We benchmark it against a mixture-of-experts (MoE) approach and an approach of combining the modalities with an additional encoder network. An empirical evaluation shows that the PoE based models can outperform the contrasted models. Our experiments support the intuition that PoE models are more suited for a conjunctive combination of modalities.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.