Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Incorporating Coincidental Water Data into Non-intrusive Load Monitoring (2101.07190v1)

Published 18 Jan 2021 in eess.SY, cs.LG, and cs.SY

Abstract: Non-intrusive load monitoring (NILM) as the process of extracting the usage pattern of appliances from the aggregated power signal is among successful approaches aiding residential energy management. In recent years, high volume datasets on power profiles have become available, which has helped make classification methods employed for the NILM purpose more effective and more accurate. However, the presence of multi-mode appliances and appliances with close power values have remained influential in worsening the computational complexity and diminishing the accuracy of these algorithms. To tackle these challenges, we propose an event-based classification process, in the first phase of which the $K$-nearest neighbors method, as a fast classification technique, is employed to extract power signals of appliances with exclusive non-overlapping power values. Then, two deep learning models, which consider the water consumption of some appliances as a novel signature in the network, are utilized to distinguish between appliances with overlapping power values. In addition to power disaggregation, the proposed process as well extracts the water consumption profiles of specific appliances. To illustrate the proposed process and validate its efficiency, seven appliances of the AMPds are considered, with the numerical classification results showing marked improvement with respect to the existing classification-based NILM techniques.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.