Revisiting the Auction Algorithm for Weighted Bipartite Perfect Matchings (2101.07155v1)
Abstract: We study the classical weighted perfect matchings problem for bipartite graphs or sometimes referred to as the assignment problem, i.e., given a weighted bipartite graph $G = (U\cup V,E)$ with weights $w : E \rightarrow \mathcal{R}$ we are interested to find the maximum matching in $G$ with the minimum/maximum weight. In this work we present a new and arguably simpler analysis of one of the earliest techniques developed for solving the assignment problem, namely the auction algorithm. Using our analysis technique we present tighter and improved bounds on the runtime complexity for finding an approximate minumum weight perfect matching in $k$-left regular sparse bipartite graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.