Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Caching with Optimal Switching Regret (2101.07043v1)

Published 18 Jan 2021 in cs.IT, cs.LG, cs.PF, and math.IT

Abstract: We consider the classical uncoded caching problem from an online learning point-of-view. A cache of limited storage capacity can hold $C$ files at a time from a large catalog. A user requests an arbitrary file from the catalog at each time slot. Before the file request from the user arrives, a caching policy populates the cache with any $C$ files of its choice. In the case of a cache-hit, the policy receives a unit reward and zero rewards otherwise. In addition to that, there is a cost associated with fetching files to the cache, which we refer to as the switching cost. The objective is to design a caching policy that incurs minimal regret while considering both the rewards due to cache-hits and the switching cost due to the file fetches. The main contribution of this paper is the switching regret analysis of a Follow the Perturbed Leader-based anytime caching policy, which is shown to have an order optimal switching regret. In this pursuit, we improve the best-known switching regret bound for this problem by a factor of $\Theta(\sqrt{C}).$ We conclude the paper by comparing the performance of different popular caching policies using a publicly available trace from a commercial CDN server.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube