Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action Recognition (2101.07042v3)

Published 18 Jan 2021 in cs.CV

Abstract: Zero-shot action recognition is the task of recognizingaction classes without visual examples, only with a seman-tic embedding which relates unseen to seen classes. Theproblem can be seen as learning a function which general-izes well to instances of unseen classes without losing dis-crimination between classes. Neural networks can modelthe complex boundaries between visual classes, which ex-plains their success as supervised models. However, inzero-shot learning, these highly specialized class bound-aries may not transfer well from seen to unseen classes.In this paper we propose a centroid-based representation,which clusters visual and semantic representation, consid-ers all training samples at once, and in this way generaliz-ing well to instances from unseen classes. We optimize theclustering using Reinforcement Learning which we show iscritical for our approach to work. We call the proposedmethod CLASTER and observe that it consistently outper-forms the state-of-the-art in all standard datasets, includ-ing UCF101, HMDB51 and Olympic Sports; both in thestandard zero-shot evaluation and the generalized zero-shotlearning. Further, we show that our model performs com-petitively in the image domain as well, outperforming thestate-of-the-art in many settings.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com