Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An FPT algorithm for Matching Cut and d-cut (2101.06998v3)

Published 18 Jan 2021 in cs.DS

Abstract: Given a positive integer $d$, the d-CUT is the problem of deciding if an undirected graph $G=(V,E)$ has a cut $(A,B)$ such that every vertex in $A$ (resp. $B$) has at most $d$ neighbors in $B$ (resp. $A$). For $d=1$, the problem is referred to as MATCHING CUT. Gomes and Sau, in IPEC 2019, gave the first fixed parameter tractable algorithm for d-CUT parameterized by maximum number of the crossing edges in the cut (i.e. the size of edge cut). However, their paper doesn't provide an explicit bound on the running time, as it indirectly relies on a MSOL formulation and Courcelle's Theorem. Motivated by this, we design and present an FPT algorithm for d-CUT for general graphs with running time $2{O(k\log k)}n{O(1)}$ where $k$ is the maximum size of the edge cut. This is the first FPT algorithm for the d-CUT and MATCHING CUT with an explicit dependence on this parameter. We also observe that there is no algorithm solving MATCHING CUT in time $2{o(k)}n{O(1)}$ where $k$ is the maximum size of the edge cut unless ETH fails.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.