Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Cooperative and Competitive Biases for Multi-Agent Reinforcement Learning (2101.06890v1)

Published 18 Jan 2021 in cs.LG, cs.AI, and cs.MA

Abstract: Training a multi-agent reinforcement learning (MARL) algorithm is more challenging than training a single-agent reinforcement learning algorithm, because the result of a multi-agent task strongly depends on the complex interactions among agents and their interactions with a stochastic and dynamic environment. We propose an algorithm that boosts MARL training using the biased action information of other agents based on a friend-or-foe concept. For a cooperative and competitive environment, there are generally two groups of agents: cooperative-agents and competitive-agents. In the proposed algorithm, each agent updates its value function using its own action and the biased action information of other agents in the two groups. The biased joint action of cooperative agents is computed as the sum of their actual joint action and the imaginary cooperative joint action, by assuming all the cooperative agents jointly maximize the target agent's value function. The biased joint action of competitive agents can be computed similarly. Each agent then updates its own value function using the biased action information, resulting in a biased value function and corresponding biased policy. Subsequently, the biased policy of each agent is inevitably subjected to recommend an action to cooperate and compete with other agents, thereby introducing more active interactions among agents and enhancing the MARL policy learning. We empirically demonstrate that our algorithm outperforms existing algorithms in various mixed cooperative-competitive environments. Furthermore, the introduced biases gradually decrease as the training proceeds and the correction based on the imaginary assumption vanishes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.