Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Continuous Multi-objective Zero-touch Network Slicing via Twin Delayed DDPG and OpenAI Gym (2101.06617v1)

Published 17 Jan 2021 in cs.NI

Abstract: AI-driven zero-touch network slicing (NS) is a new paradigm enabling the automation of resource management and orchestration (MANO) in multi-tenant beyond 5G (B5G) networks. In this paper, we tackle the problem of cloud-RAN (C-RAN) joint slice admission control and resource allocation by first formulating it as a Markov decision process (MDP). We then invoke an advanced continuous deep reinforcement learning (DRL) method called twin delayed deep deterministic policy gradient (TD3) to solve it. In this intent, we introduce a multi-objective approach to make the central unit (CU) learn how to re-configure computing resources autonomously while minimizing latency, energy consumption and virtual network function (VNF) instantiation cost for each slice. Moreover, we build a complete 5G C-RAN network slicing environment using OpenAI Gym toolkit where, thanks to its standardized interface, it can be easily tested with different DRL schemes. Finally, we present extensive experimental results to showcase the gain of TD3 as well as the adopted multi-objective strategy in terms of achieved slice admission success rate, latency, energy saving and CPU utilization.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.