Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Simultaneous Embedding of Colored Graphs (2101.06596v1)

Published 17 Jan 2021 in cs.CG

Abstract: A set of colored graphs are compatible, if for every color $i$, the number of vertices of color $i$ is the same in every graph. A simultaneous embedding of $k$ compatibly colored graphs, each with $n$ vertices, consists of $k$ planar polyline drawings of these graphs such that the vertices of the same color are mapped to a common set of vertex locations. We prove that simultaneous embedding of $k\in o(\log \log n)$ colored planar graphs, each with $n$ vertices, can always be computed with a sublinear number of bends per edge. Specifically, we show an $O(\min{c, n{1-1/\gamma}})$ upper bound on the number of bends per edge, where $\gamma = 2{\lceil k/2 \rceil}$ and $c$ is the total number of colors. Our bound, which results from a better analysis of a previously known algorithm [Durocher and Mondal, SIAM J. Discrete Math., 32(4), 2018], improves the bound for $k$, as well as the bend complexity by a factor of $\sqrt{2}{k}$. The algorithm can be generalized to obtain small universal point sets for colored graphs. We prove that $n\lceil c/b \rceil$ vertex locations, where $b\ge 1$, suffice to embed any set of compatibly colored $n$-vertex planar graphs with bend complexity $O(b)$, where $c$ is the number of colors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.