Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SelfMatch: Combining Contrastive Self-Supervision and Consistency for Semi-Supervised Learning (2101.06480v1)

Published 16 Jan 2021 in cs.LG and cs.CV

Abstract: This paper introduces SelfMatch, a semi-supervised learning method that combines the power of contrastive self-supervised learning and consistency regularization. SelfMatch consists of two stages: (1) self-supervised pre-training based on contrastive learning and (2) semi-supervised fine-tuning based on augmentation consistency regularization. We empirically demonstrate that SelfMatch achieves the state-of-the-art results on standard benchmark datasets such as CIFAR-10 and SVHN. For example, for CIFAR-10 with 40 labeled examples, SelfMatch achieves 93.19% accuracy that outperforms the strong previous methods such as MixMatch (52.46%), UDA (70.95%), ReMixMatch (80.9%), and FixMatch (86.19%). We note that SelfMatch can close the gap between supervised learning (95.87%) and semi-supervised learning (93.19%) by using only a few labels for each class.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.