Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Survey on Extraction of Causal Relations from Natural Language Text (2101.06426v2)

Published 16 Jan 2021 in cs.IR and cs.CL

Abstract: As an essential component of human cognition, cause-effect relations appear frequently in text, and curating cause-effect relations from text helps in building causal networks for predictive tasks. Existing causality extraction techniques include knowledge-based, statistical machine learning(ML)-based, and deep learning-based approaches. Each method has its advantages and weaknesses. For example, knowledge-based methods are understandable but require extensive manual domain knowledge and have poor cross-domain applicability. Statistical machine learning methods are more automated because of NLP toolkits. However, feature engineering is labor-intensive, and toolkits may lead to error propagation. In the past few years, deep learning techniques attract substantial attention from NLP researchers because of its' powerful representation learning ability and the rapid increase in computational resources. Their limitations include high computational costs and a lack of adequate annotated training data. In this paper, we conduct a comprehensive survey of causality extraction. We initially introduce primary forms existing in the causality extraction: explicit intra-sentential causality, implicit causality, and inter-sentential causality. Next, we list benchmark datasets and modeling assessment methods for causal relation extraction. Then, we present a structured overview of the three techniques with their representative systems. Lastly, we highlight existing open challenges with their potential directions.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.