Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Latent Variable Models for Visual Question Answering (2101.06399v2)

Published 16 Jan 2021 in cs.CV, cs.AI, and cs.CL

Abstract: Current work on Visual Question Answering (VQA) explore deterministic approaches conditioned on various types of image and question features. We posit that, in addition to image and question pairs, other modalities are useful for teaching machine to carry out question answering. Hence in this paper, we propose latent variable models for VQA where extra information (e.g. captions and answer categories) are incorporated as latent variables, which are observed during training but in turn benefit question-answering performance at test time. Experiments on the VQA v2.0 benchmarking dataset demonstrate the effectiveness of our proposed models: they improve over strong baselines, especially those that do not rely on extensive language-vision pre-training.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.