Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Latent Variable Models for Visual Question Answering (2101.06399v2)

Published 16 Jan 2021 in cs.CV, cs.AI, and cs.CL

Abstract: Current work on Visual Question Answering (VQA) explore deterministic approaches conditioned on various types of image and question features. We posit that, in addition to image and question pairs, other modalities are useful for teaching machine to carry out question answering. Hence in this paper, we propose latent variable models for VQA where extra information (e.g. captions and answer categories) are incorporated as latent variables, which are observed during training but in turn benefit question-answering performance at test time. Experiments on the VQA v2.0 benchmarking dataset demonstrate the effectiveness of our proposed models: they improve over strong baselines, especially those that do not rely on extensive language-vision pre-training.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.