Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reliable GNSS Localization Against Multiple Faults Using a Particle Filter Framework (2101.06380v4)

Published 16 Jan 2021 in cs.RO

Abstract: For reliable operation on urban roads, navigation using the Global Navigation Satellite System (GNSS) requires both accurately estimating the positioning detail from GNSS pseudorange measurements and determining when the estimated position is safe to use, or available. However, multiple GNSS measurements in urban environments contain biases, or faults, due to signal reflection and blockage from nearby buildings which are difficult to mitigate for estimating the position and availability. This paper proposes a novel particle filter-based framework that employs a Gaussian Mixture Model (GMM) likelihood of GNSS measurements to robustly estimate the position of a navigating vehicle under multiple measurement faults. Using the probability distribution tracked by the filter and the designed GMM likelihood, we measure the accuracy and the risk associated with localization and determine the availability of the navigation system at each time instant. Through experiments conducted on challenging simulated and real urban driving scenarios, we show that our method achieves small horizontal positioning errors compared to existing filter-based state estimation techniques when multiple GNSS measurements contain faults. Furthermore, we verify using several simulations that our method determines system availability with smaller probability of false alarms and integrity risk than the existing particle filter-based integrity monitoring approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.