Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-point dimensionality reduction to improve projection layout reliability (2101.06224v5)

Published 15 Jan 2021 in cs.CV

Abstract: In ordinary Dimensionality Reduction (DR), each data instance in a high dimensional space (original space), or on a distance matrix denoting original space distances, is mapped to (projected onto) one point in a low dimensional space (visual space), building a layout of projected points trying to preserve as much as possible some property of data such as distances, neighbourhood relationships, and/or topology structures, with the ultimate goal of approximating semantic properties of data with preserved geometric properties or topology structures in visual space. In this paper, the concept of Multi-point Dimensionality Reduction is elaborated on where each data instance can be mapped to (projected onto) possibly more than one point in visual space by providing the first general solution (algorithm) for it as a move in the direction of improving reliablity, usability and interpretability of dimensionality reduction. Furthermore by allowing the points in visual space to be split into two layers while maintaining the possibility of having more than one projection (mapping) per data instance , the benefit of separating more reliable points from less reliable points is dicussed notwithstanding the effort to improve less reliable points. The proposed solution (algorithm) in this paper, named Layered Vertex Splitting Data Embedding (LVSDE), is built upon and extends a combination of ordinary DR and graph drawing techniques. Based on the experiments of this paper on some data sets, the particular proposed algorithm (LVSDE) practically outperforms popular ordinary DR methods visually (semantics, group separation, subgroup detection or combinational group detection) in a way that is easily explainable.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.