Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Federated Learning: Opportunities and Challenges (2101.05428v1)

Published 14 Jan 2021 in cs.LG and cs.DC

Abstract: Federated Learning (FL) is a concept first introduced by Google in 2016, in which multiple devices collaboratively learn a machine learning model without sharing their private data under the supervision of a central server. This offers ample opportunities in critical domains such as healthcare, finance etc, where it is risky to share private user information to other organisations or devices. While FL appears to be a promising Machine Learning (ML) technique to keep the local data private, it is also vulnerable to attacks like other ML models. Given the growing interest in the FL domain, this report discusses the opportunities and challenges in federated learning.

Citations (157)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.