Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DAEs for Linear Inverse Problems: Improved Recovery with Provable Guarantees (2101.05130v1)

Published 13 Jan 2021 in eess.IV, cs.CV, and cs.LG

Abstract: Generative priors have been shown to provide improved results over sparsity priors in linear inverse problems. However, current state of the art methods suffer from one or more of the following drawbacks: (a) speed of recovery is slow; (b) reconstruction quality is deficient; (c) reconstruction quality is contingent on a computationally expensive process of tuning hyperparameters. In this work, we address these issues by utilizing Denoising Auto Encoders (DAEs) as priors and a projected gradient descent algorithm for recovering the original signal. We provide rigorous theoretical guarantees for our method and experimentally demonstrate its superiority over existing state of the art methods in compressive sensing, inpainting, and super-resolution. We find that our algorithm speeds up recovery by two orders of magnitude (over 100x), improves quality of reconstruction by an order of magnitude (over 10x), and does not require tuning hyperparameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jasjeet Dhaliwal (4 papers)
  2. Kyle Hambrook (16 papers)

Summary

We haven't generated a summary for this paper yet.