Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Towards Energy Efficient Federated Learning over 5G+ Mobile Devices (2101.04866v1)

Published 13 Jan 2021 in cs.LG and cs.NI

Abstract: The continuous convergence of machine learning algorithms, 5G and beyond (5G+) wireless communications, and AI hardware implementation hastens the birth of federated learning (FL) over 5G+ mobile devices, which pushes AI functions to mobile devices and initiates a new era of on-device AI applications. Despite the remarkable progress made in FL, huge energy consumption is one of the most significant obstacles restricting the development of FL over battery-constrained 5G+ mobile devices. To address this issue, in this paper, we investigate how to develop energy efficient FL over 5G+ mobile devices by making a trade-off between energy consumption for "working" (i.e., local computing) and that for "talking" (i.e., wireless communications) in order to boost the overall energy efficiency. Specifically, we first examine energy consumption models for graphics processing unit (GPU) computation and wireless transmissions. Then, we overview the state of the art of integrating FL procedure with energy-efficient learning techniques (e.g., gradient sparsification, weight quantization, pruning, etc.). Finally, we present several potential future research directions for FL over 5G+ mobile devices from the perspective of energy efficiency.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube