Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Towards Energy Efficient Federated Learning over 5G+ Mobile Devices (2101.04866v1)

Published 13 Jan 2021 in cs.LG and cs.NI

Abstract: The continuous convergence of machine learning algorithms, 5G and beyond (5G+) wireless communications, and AI hardware implementation hastens the birth of federated learning (FL) over 5G+ mobile devices, which pushes AI functions to mobile devices and initiates a new era of on-device AI applications. Despite the remarkable progress made in FL, huge energy consumption is one of the most significant obstacles restricting the development of FL over battery-constrained 5G+ mobile devices. To address this issue, in this paper, we investigate how to develop energy efficient FL over 5G+ mobile devices by making a trade-off between energy consumption for "working" (i.e., local computing) and that for "talking" (i.e., wireless communications) in order to boost the overall energy efficiency. Specifically, we first examine energy consumption models for graphics processing unit (GPU) computation and wireless transmissions. Then, we overview the state of the art of integrating FL procedure with energy-efficient learning techniques (e.g., gradient sparsification, weight quantization, pruning, etc.). Finally, we present several potential future research directions for FL over 5G+ mobile devices from the perspective of energy efficiency.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.