Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improved Hierarchical Clustering on Massive Datasets with Broad Guarantees (2101.04818v1)

Published 13 Jan 2021 in cs.DS

Abstract: Hierarchical clustering is a stronger extension of one of today's most influential unsupervised learning methods: clustering. The goal of this method is to create a hierarchy of clusters, thus constructing cluster evolutionary history and simultaneously finding clusterings at all resolutions. We propose four traits of interest for hierarchical clustering algorithms: (1) empirical performance, (2) theoretical guarantees, (3) cluster balance, and (4) scalability. While a number of algorithms are designed to achieve one to two of these traits at a time, there exist none that achieve all four. Inspired by Bateni et al.'s scalable and empirically successful Affinity Clustering [NeurIPs 2017], we introduce Affinity Clustering's successor, Matching Affinity Clustering. Like its predecessor, Matching Affinity Clustering maintains strong empirical performance and uses Massively Parallel Communication as its distributed model. Designed to maintain provably balanced clusters, we show that our algorithm achieves good, constant factor approximations for Moseley and Wang's revenue and Cohen-Addad et al.'s value. We show Affinity Clustering cannot approximate either function. Along the way, we also introduce an efficient $k$-sized maximum matching algorithm in the MPC model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.