Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

ChemNODE: A Neural Ordinary Differential Equations Approach for Chemical Kinetics Solvers (2101.04749v3)

Published 3 Dec 2020 in cs.CE and physics.flu-dyn

Abstract: Solving for detailed chemical kinetics remains one of the major bottlenecks for computational fluid dynamics simulations of reacting flows using a finite-rate-chemistry approach. This has motivated the use of fully connected artificial neural networks to predict stiff chemical source terms as functions of the thermochemical state of the combustion system. However, due to the nonlinearities and multi-scale nature of combustion, the predicted solution often diverges from the true solution when these deep learning models are coupled with a computational fluid dynamics solver. This is because these approaches minimize the error during training without guaranteeing successful integration with ordinary differential equation solvers. In the present work, a novel neural ordinary differential equations approach to modeling chemical kinetics, termed as ChemNODE, is developed. In this deep learning framework, the chemical source terms predicted by the neural networks are integrated during training, and by computing the required derivatives, the neural network weights are adjusted accordingly to minimize the difference between the predicted and ground-truth solution. A proof-of-concept study is performed with ChemNODE for homogeneous autoignition of hydrogen-air mixture over a range of composition and thermodynamic conditions. It is shown that ChemNODE accurately captures the correct physical behavior and reproduces the results obtained using the full chemical kinetic mechanism at a fraction of the computational cost.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.