Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 167 tok/s Pro
GPT OSS 120B 400 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Discriminative Noise Robust Sparse Orthogonal Label Regression-based Domain Adaptation (2101.04563v1)

Published 9 Jan 2021 in cs.CV

Abstract: Domain adaptation (DA) aims to enable a learning model trained from a source domain to generalize well on a target domain, despite the mismatch of data distributions between the two domains. State-of-the-art DA methods have so far focused on the search of a latent shared feature space where source and target domain data can be aligned either statistically and/or geometrically. In this paper, we propose a novel unsupervised DA method, namely Discriminative Noise Robust Sparse Orthogonal Label Regression-based Domain Adaptation (DOLL-DA). The proposed DOLL-DA derives from a novel integrated model which searches a shared feature subspace where source and target domain data are, through optimization of some repulse force terms, discriminatively aligned statistically, while at same time regresses orthogonally data labels thereof using a label embedding trick. Furthermore, in minimizing a novel Noise Robust Sparse Orthogonal Label Regression(NRS_OLR) term, the proposed model explicitly accounts for data outliers to avoid negative transfer and introduces the property of sparsity when regressing data labels. Due to the character restriction. Please read our detailed abstract in our paper.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.