Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Of Non-Linearity and Commutativity in BERT (2101.04547v4)

Published 12 Jan 2021 in cs.CL and cs.AI

Abstract: In this work we provide new insights into the transformer architecture, and in particular, its best-known variant, BERT. First, we propose a method to measure the degree of non-linearity of different elements of transformers. Next, we focus our investigation on the feed-forward networks (FFN) inside transformers, which contain 2/3 of the model parameters and have so far not received much attention. We find that FFNs are an inefficient yet important architectural element and that they cannot simply be replaced by attention blocks without a degradation in performance. Moreover, we study the interactions between layers in BERT and show that, while the layers exhibit some hierarchical structure, they extract features in a fuzzy manner. Our results suggest that BERT has an inductive bias towards layer commutativity, which we find is mainly due to the skip connections. This provides a justification for the strong performance of recurrent and weight-shared transformer models.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com