Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

NxTF: An API and Compiler for Deep Spiking Neural Networks on Intel Loihi (2101.04261v1)

Published 12 Jan 2021 in cs.ET

Abstract: Spiking Neural Networks (SNNs) are a promising paradigm for efficient event-driven processing of spatio-temporally sparse data streams. SNNs have inspired the design and can take advantage of the emerging class of neuromorphic processors like Intel Loihi. These novel hardware architectures expose a variety of constraints that affect firmware, compiler and algorithm development alike. To enable rapid and flexible development of SNN algorithms on Loihi, we developed NxTF: a programming interface derived from Keras and compiler optimized for mapping deep convolutional SNNs to the multi-core Intel Loihi architecture. We evaluate NxTF on DNNs trained directly on spikes as well as models converted from traditional DNNs, processing both sparse event-based and dense frame-based data sets. Further, we assess the effectiveness of the compiler to distribute models across a large number of cores and to compress models by exploiting Loihi's weight sharing features. Finally, we evaluate model accuracy, energy and time to solution compared to other architectures. The compiler achieves near optimal resource utilization of 80% across 16 Loihi chips for a 28-layer, 4M parameter MobileNet model with input size 128x128. In addition, we report the lowest error rate of 8.52% for the CIFAR-10 dataset on neuromorphic hardware, using an off-the-shelf MobileNet.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.