Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Query Lifting: Language-integrated query for heterogeneous nested collections (2101.04102v2)

Published 11 Jan 2021 in cs.PL and cs.DB

Abstract: Language-integrated query based on comprehension syntax is a powerful technique for safe database programming, and provides a basis for advanced techniques such as query shredding or query flattening that allow efficient programming with complex nested collections. However, the foundations of these techniques are lacking: although SQL, the most widely-used database query language, supports heterogeneous queries that mix set and multiset semantics, these important capabilities are not supported by known correctness results or implementations that assume homogeneous collections. In this paper we study language-integrated query for a heterogeneous query language $NRC_\lambda(Set,Bag)$ that combines set and multiset constructs. We show how to normalize and translate queries to SQL, and develop a novel approach to querying heterogeneous nested collections, based on the insight that local'' query subexpressions that calculate nested subcollections can belifted'' to the top level analogously to lambda-lifting for local function definitions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube