Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Query Lifting: Language-integrated query for heterogeneous nested collections (2101.04102v2)

Published 11 Jan 2021 in cs.PL and cs.DB

Abstract: Language-integrated query based on comprehension syntax is a powerful technique for safe database programming, and provides a basis for advanced techniques such as query shredding or query flattening that allow efficient programming with complex nested collections. However, the foundations of these techniques are lacking: although SQL, the most widely-used database query language, supports heterogeneous queries that mix set and multiset semantics, these important capabilities are not supported by known correctness results or implementations that assume homogeneous collections. In this paper we study language-integrated query for a heterogeneous query language $NRC_\lambda(Set,Bag)$ that combines set and multiset constructs. We show how to normalize and translate queries to SQL, and develop a novel approach to querying heterogeneous nested collections, based on the insight that local'' query subexpressions that calculate nested subcollections can belifted'' to the top level analogously to lambda-lifting for local function definitions.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.