Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Conflict-Based Search Framework for Multi-Objective Multi-Agent Path Finding (2101.03805v5)

Published 11 Jan 2021 in cs.AI and cs.RO

Abstract: Conventional multi-agent path planners typically compute an ensemble of paths while optimizing a single objective, such as path length. However, many applications may require multiple objectives, say fuel consumption and completion time, to be simultaneously optimized during planning and these criteria may not be readily compared and sometimes lie in competition with each other. The goal of the problem is thus to find a Pareto-optimal set of solutions instead of a single optimal solution. Naively applying existing multi-objective search algorithms, such as multi-objective A* (MOA*), to multi-agent path finding may prove to be inefficient as the dimensionality of the search space grows exponentially with the number of agents. This article presents an approach named Multi-Objective Conflict-Based Search (MO-CBS) that attempts to address this so-called curse of dimensionality by leveraging prior Conflict-Based Search (CBS), a well-known algorithm for single-objective multi-agent path finding, and principles of dominance from multi-objective optimization literature. We also develop several variants of MO-CBS to improve its performance. We prove that MO-CBS and its variants can compute the entire Pareto-optimal set. Numerical results show that MO-CBS outperforms MOM*, a recently developed state-of-the-art multi-objective multi-agent planner.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com