Refined Notions of Parameterized Enumeration Kernels with Applications to Matching Cut Enumeration (2101.03800v1)
Abstract: An enumeration kernel as defined by Creignou et al. [Theory Comput. Syst. 2017] for a parameterized enumeration problem consists of an algorithm that transforms each instance into one whose size is bounded by the parameter plus a solution-lifting algorithm that efficiently enumerates all solutions from the set of the solutions of the kernel. We propose to consider two new versions of enumeration kernels by asking that the solutions of the original instance can be enumerated in polynomial time or with polynomial delay from the kernel solutions. Using the NP-hard Matching Cut problem parameterized by structural parameters such as the vertex cover number or the cyclomatic number of the input graph, we show that the new enumeration kernels present a useful notion of data reduction for enumeration problems which allows to compactly represent the set of feasible solutions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.