Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Solving phase retrieval with random initial guess is nearly as good as by spectral initialization (2101.03540v1)

Published 10 Jan 2021 in cs.IT, cs.NA, math.IT, math.NA, and math.OC

Abstract: The problem of recovering a signal $\mathbf{x}\in \mathbb{R}n$ from a set of magnitude measurements $y_i=|\langle \mathbf{a}_i, \mathbf{x} \rangle |, \; i=1,\ldots,m$ is referred as phase retrieval, which has many applications in fields of physical sciences and engineering. In this paper we show that the smoothed amplitude flow model for phase retrieval has benign geometric structure under the optimal sampling complexity. In particular, we show that when the measurements $\mathbf{a}_i\in \mathbb{R}n$ are Gaussian random vectors and the number of measurements $m\ge Cn$, our smoothed amplitude flow model has no spurious local minimizers with high probability, ie., the target solution $\mathbf{x}$ is the unique global minimizer (up to a global phase) and the loss function has a negative directional curvature around each saddle point. Due to this benign geometric landscape, the phase retrieval problem can be solved by the gradient descent algorithms without spectral initialization. Numerical experiments show that the gradient descent algorithm with random initialization performs well even comparing with state-of-the-art algorithms with spectral initialization in empirical success rate and convergence speed.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.