Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Interpretable Multiple Treatment Revenue Uplift Modeling (2101.03336v1)

Published 9 Jan 2021 in cs.LG

Abstract: Big data and business analytics are critical drivers of business and societal transformations. Uplift models support a firm's decision-making by predicting the change of a customer's behavior due to a treatment. Prior work examines models for single treatments and binary customer responses. The paper extends corresponding approaches by developing uplift models for multiple treatments and continuous outcomes. This facilitates selecting an optimal treatment from a set of alternatives and estimating treatment effects in the form of business outcomes of continuous scale. Another contribution emerges from an evaluation of an uplift model's interpretability, whereas prior studies focus almost exclusively on predictive performance. To achieve these goals, the paper develops revenue uplift models for multiple treatments based on a recently introduced algorithm for causal machine learning, the causal forest. Empirical experimentation using two real-world marketing data sets demonstrates the advantages of the proposed modeling approach over benchmarks and standard marketing practices.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.