Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spending Your Winning Lottery Better After Drawing It (2101.03255v3)

Published 8 Jan 2021 in cs.LG and cs.CV

Abstract: Lottery Ticket Hypothesis (LTH) suggests that a dense neural network contains a sparse sub-network that can match the performance of the original dense network when trained in isolation from scratch. Most works retrain the sparse sub-network with the same training protocols as its dense network, such as initialization, architecture blocks, and training recipes. However, till now it is unclear that whether these training protocols are optimal for sparse networks. In this paper, we demonstrate that it is unnecessary for spare retraining to strictly inherit those properties from the dense network. Instead, by plugging in purposeful "tweaks" of the sparse subnetwork architecture or its training recipe, its retraining can be significantly improved than the default, especially at high sparsity levels. Combining all our proposed "tweaks" can yield the new state-of-the-art performance of LTH, and these modifications can be easily adapted to other sparse training algorithms in general. Specifically, we have achieved a significant and consistent performance gain of1.05% - 4.93% for ResNet18 on CIFAR-100 over vanilla-LTH. Moreover, our methods are shown to generalize across datasets (CIFAR10, CIFAR100, TinyImageNet) and architectures (Vgg16, ResNet-18/ResNet-34, MobileNet). All codes will be publicly available.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.