Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NVAE-GAN Based Approach for Unsupervised Time Series Anomaly Detection (2101.02908v1)

Published 8 Jan 2021 in cs.LG and stat.ML

Abstract: In recent studies, Lots of work has been done to solve time series anomaly detection by applying Variational Auto-Encoders (VAEs). Time series anomaly detection is a very common but challenging task in many industries, which plays an important role in network monitoring, facility maintenance, information security, and so on. However, it is very difficult to detect anomalies in time series with high accuracy, due to noisy data collected from real world, and complicated abnormal patterns. From recent studies, we are inspired by Nouveau VAE (NVAE) and propose our anomaly detection model: Time series to Image VAE (T2IVAE), an unsupervised model based on NVAE for univariate series, transforming 1D time series to 2D image as input, and adopting the reconstruction error to detect anomalies. Besides, we also apply the Generative Adversarial Networks based techniques to T2IVAE training strategy, aiming to reduce the overfitting. We evaluate our model performance on three datasets, and compare it with other several popular models using F1 score. T2IVAE achieves 0.639 on Numenta Anomaly Benchmark, 0.651 on public dataset from NASA, and 0.504 on our dataset collected from real-world scenario, outperforms other comparison models.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.