Papers
Topics
Authors
Recent
2000 character limit reached

Effect of Word Embedding Variable Parameters on Arabic Sentiment Analysis Performance

Published 8 Jan 2021 in cs.CL and cs.LG | (2101.02906v1)

Abstract: Social media such as Twitter, Facebook, etc. has led to a generated growing number of comments that contains users opinions. Sentiment analysis research deals with these comments to extract opinions which are positive or negative. Arabic language is a rich morphological language; thus, classical techniques of English sentiment analysis cannot be used for Arabic. Word embedding technique can be considered as one of successful methods to gaping the morphological problem of Arabic. Many works have been done for Arabic sentiment analysis based on word embedding, but there is no study focused on variable parameters. This study will discuss three parameters (Window size, Dimension of vector and Negative Sample) for Arabic sentiment analysis using DBOW and DMPV architectures. A large corpus of previous works generated to learn word representations and extract features. Four binary classifiers (Logistic Regression, Decision Tree, Support Vector Machine and Naive Bayes) are used to detect sentiment. The performance of classifiers evaluated based on; Precision, Recall and F1-score.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.