Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unsupervised Domain Adaptation of Black-Box Source Models (2101.02839v2)

Published 8 Jan 2021 in cs.LG and cs.CV

Abstract: Unsupervised domain adaptation (UDA) aims to learn models for a target domain of unlabeled data by transferring knowledge from a labeled source domain. In the traditional UDA setting, labeled source data are assumed to be available for adaptation. Due to increasing concerns for data privacy, source-free UDA is highly appreciated as a new UDA setting, where only a trained source model is assumed to be available, while labeled source data remain private. However, trained source models may also be unavailable in practice since source models may have commercial values and exposing source models brings risks to the source domain, e.g., problems of model misuse and white-box attacks. In this work, we study a subtly different setting, named Black-Box Unsupervised Domain Adaptation (B$2$UDA), where only the application programming interface of source model is accessible to the target domain; in other words, the source model itself is kept as a black-box one. To tackle B$2$UDA, we propose a simple yet effective method, termed Iterative Learning with Noisy Labels (IterLNL). With black-box models as tools of noisy labeling, IterLNL conducts noisy labeling and learning with noisy labels (LNL), iteratively. To facilitate the implementation of LNL in B$2$UDA, we estimate the noise rate from model predictions of unlabeled target data and propose category-wise sampling to tackle the unbalanced label noise among categories. Experiments on benchmark datasets show the efficacy of IterLNL. Given neither source data nor source models, IterLNL performs comparably with traditional UDA methods that make full use of labeled source data.

Citations (49)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube