Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Differentially private depth functions and their associated medians (2101.02800v3)

Published 7 Jan 2021 in math.ST, cs.CR, stat.ME, and stat.TH

Abstract: In this paper, we investigate the differentially private estimation of data depth functions and their associated medians. We introduce several methods for privatizing depth values at a fixed point, and show that for some depth functions, when the depth is computed at an out of sample point, privacy can be gained for free when $n\rightarrow \infty$. We also present a method for privately estimating the vector of sample point depth values. Additionally, we introduce estimation methods for depth-based medians for both depth functions with low global sensitivity and depth functions with only highly probable, low local sensitivity. We provide a general result (Lemma 1) which can be used to prove consistency of an estimator produced by the exponential mechanism, provided the limiting cost function is sufficiently smooth at a unique minimizer. We also introduce a general algorithm to privately estimate a minimizer of a cost function which has, with high probability, low local sensitivity. This algorithm combines the propose-test-release algorithm with the exponential mechanism. An application of this algorithm to generate consistent estimates of the projection depth-based median is presented. Thus, for these private depth-based medians, we show that it is possible for privacy to be obtained for free when $n\rightarrow \infty$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.