Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Planar Reachability Under Single Vertex or Edge Failures (2101.02574v1)

Published 7 Jan 2021 in cs.DS

Abstract: In this paper we present an efficient reachability oracle under single-edge or single-vertex failures for planar directed graphs. Specifically, we show that a planar digraph $G$ can be preprocessed in $O(n\log2{n}/\log\log{n})$ time, producing an $O(n\log{n})$-space data structure that can answer in $O(\log{n})$ time whether $u$ can reach $v$ in $G$ if the vertex $x$ (the edge~$f$) is removed from $G$, for any query vertices $u,v$ and failed vertex $x$ (failed edge $f$). To the best of our knowledge, this is the first data structure for planar directed graphs with nearly optimal preprocessing time that answers all-pairs queries under any kind of failures in polylogarithmic time. We also consider 2-reachability problems, where we are given a planar digraph $G$ and we wish to determine if there are two vertex-disjoint (edge-disjoint) paths from $u$ to $v$, for query vertices $u,v$. In this setting we provide a nearly optimal 2-reachability oracle, which is the existential variant of the reachability oracle under single failures, with the following bounds. We can construct in $O(n\log{O(1)}{n})$ time an $O(n\log{3+o(1)}{n})$-space data structure that can check in $O(\log{2+o(1)}{n})$ time for any query vertices $u,v$ whether $v$ is 2-reachable from $u$, or otherwise find some separating vertex (edge) $x$ lying on all paths from $u$ to $v$ in $G$. To obtain our results, we follow the general recursive approach of Thorup for reachability in planar graphs [J.~ACM~'04] and we present new data structures which generalize dominator trees and previous data structures for strong-connectivity under failures [Georgiadis et al., SODA~'17]. Our new data structures work also for general digraphs and may be of independent interest.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube