Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Analysis of fully discrete finite element methods for 2D Navier--Stokes equations with critical initial data (2101.02444v3)

Published 7 Jan 2021 in math.NA and cs.NA

Abstract: First-order convergence in time and space is proved for a fully discrete semi-implicit finite element method for the two-dimensional Navier--Stokes equations with $L2$ initial data in convex polygonal domains, without extra regularity assumptions or grid-ratio conditions. The proof utilises the smoothing properties of the Navier--Stokes equations, an appropriate duality argument, and the smallness of the numerical solution in the discrete $L2(0,t_m;H1)$ norm when $t_m$ is smaller than some constant. Numerical examples are provided to support the theoretical analysis.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)