Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Directed mixed membership stochastic blockmodel (2101.02307v3)

Published 7 Jan 2021 in stat.ML, cs.LG, and cs.SI

Abstract: Mixed membership problem for undirected network has been well studied in network analysis recent years. However, the more general case of mixed membership for directed network in which nodes can belong to multiple communities remains a challenge. Here, we propose an interpretable and identifiable model: directed mixed membership stochastic blockmodel (DiMMSB) for directed mixed membership networks. DiMMSB allows that row nodes and column nodes of the adjacency matrix can be different and these nodes may have distinct community structure in a directed network. We also develop an efficient spectral algorithm called DiSP designed based on simplex structures inherent in the left and right singular vectors of the population adjacency matrix to estimate the mixed memberships for both row nodes and column nodes in a directed network. We show that DiSP is asymptotically consistent under mild conditions by providing error bounds for the inferred membership vectors of each row node and each column node using delicate spectral analysis. Numerical results on computer-generated directed mixed membership networks support our theoretical findings and show that our DiSP outperforms its competitor in both error rates and run-time. Applications of DiSP to real-world directed networks demonstrate the advantages of DiSP in studying the asymmetric structure of directed networks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.