Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hypothesis Stitcher for End-to-End Speaker-attributed ASR on Long-form Multi-talker Recordings (2101.01853v1)

Published 6 Jan 2021 in cs.SD, cs.CL, and eess.AS

Abstract: An end-to-end (E2E) speaker-attributed automatic speech recognition (SA-ASR) model was proposed recently to jointly perform speaker counting, speech recognition and speaker identification. The model achieved a low speaker-attributed word error rate (SA-WER) for monaural overlapped speech comprising an unknown number of speakers. However, the E2E modeling approach is susceptible to the mismatch between the training and testing conditions. It has yet to be investigated whether the E2E SA-ASR model works well for recordings that are much longer than samples seen during training. In this work, we first apply a known decoding technique that was developed to perform single-speaker ASR for long-form audio to our E2E SA-ASR task. Then, we propose a novel method using a sequence-to-sequence model, called hypothesis stitcher. The model takes multiple hypotheses obtained from short audio segments that are extracted from the original long-form input, and it then outputs a fused single hypothesis. We propose several architectural variations of the hypothesis stitcher model and compare them with the conventional decoding methods. Experiments using LibriSpeech and LibriCSS corpora show that the proposed method significantly improves SA-WER especially for long-form multi-talker recordings.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.