Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hypothesis Stitcher for End-to-End Speaker-attributed ASR on Long-form Multi-talker Recordings (2101.01853v1)

Published 6 Jan 2021 in cs.SD, cs.CL, and eess.AS

Abstract: An end-to-end (E2E) speaker-attributed automatic speech recognition (SA-ASR) model was proposed recently to jointly perform speaker counting, speech recognition and speaker identification. The model achieved a low speaker-attributed word error rate (SA-WER) for monaural overlapped speech comprising an unknown number of speakers. However, the E2E modeling approach is susceptible to the mismatch between the training and testing conditions. It has yet to be investigated whether the E2E SA-ASR model works well for recordings that are much longer than samples seen during training. In this work, we first apply a known decoding technique that was developed to perform single-speaker ASR for long-form audio to our E2E SA-ASR task. Then, we propose a novel method using a sequence-to-sequence model, called hypothesis stitcher. The model takes multiple hypotheses obtained from short audio segments that are extracted from the original long-form input, and it then outputs a fused single hypothesis. We propose several architectural variations of the hypothesis stitcher model and compare them with the conventional decoding methods. Experiments using LibriSpeech and LibriCSS corpora show that the proposed method significantly improves SA-WER especially for long-form multi-talker recordings.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.