Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning from Synthetic Shadows for Shadow Detection and Removal (2101.01713v2)

Published 5 Jan 2021 in cs.CV

Abstract: Shadow removal is an essential task in computer vision and computer graphics. Recent shadow removal approaches all train convolutional neural networks (CNN) on real paired shadow/shadow-free or shadow/shadow-free/mask image datasets. However, obtaining a large-scale, diverse, and accurate dataset has been a big challenge, and it limits the performance of the learned models on shadow images with unseen shapes/intensities. To overcome this challenge, we present SynShadow, a novel large-scale synthetic shadow/shadow-free/matte image triplets dataset and a pipeline to synthesize it. We extend a physically-grounded shadow illumination model and synthesize a shadow image given an arbitrary combination of a shadow-free image, a matte image, and shadow attenuation parameters. Owing to the diversity, quantity, and quality of SynShadow, we demonstrate that shadow removal models trained on SynShadow perform well in removing shadows with diverse shapes and intensities on some challenging benchmarks. Furthermore, we show that merely fine-tuning from a SynShadow-pre-trained model improves existing shadow detection and removal models. Codes are publicly available at https://github.com/naoto0804/SynShadow.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.