Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analyzing movies to predict their commercial viability for producers (2101.01697v1)

Published 5 Jan 2021 in cs.LG and cs.AI

Abstract: Upon film premiere, a major form of speculation concerns the relative success of the film. This relativity is in particular regards to the film's original budget, as many a time have big-budget blockbusters been met with exceptional success as met with abject failure. So how does one predict the success of an upcoming film? In this paper, we explored a vast array of film data in an attempt to develop a model that could predict the expected return of an upcoming film. The approach to this development is as follows: First, we began with the MovieLens dataset having common movie attributes along with genome tags per each film. Genome tags give insight into what particular characteristics of the film are most salient. We then included additional features regarding film content, cast/crew, audience perception, budget, and earnings from TMDB, IMDB, and Metacritic websites. Next, we performed exploratory data analysis and engineered a wide range of new features capturing historical information for the available features. Thereafter, we used singular value decomposition (SVD) for dimensionality reduction of the high dimensional features (ex. genome tags). Finally, we built a Random Forest Classifier and performed hyper-parameter tuning to optimize for model accuracy. A future application of our model could be seen in the film industry, allowing production companies to better predict the expected return of their projects based on their envisioned outline for their production procedure, thereby allowing them to revise their plan in an attempt to achieve optimal returns.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube