Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Partizan Subtraction Games (2101.01595v1)

Published 5 Jan 2021 in math.CO, cs.DM, and cs.GT

Abstract: Partizan subtraction games are combinatorial games where two players, say Left and Right, alternately remove a number n of tokens from a heap of tokens, with $n \in S_L$ (resp. $n \in S_R$) when it is Left's (resp. Right's) turn. The first player unable to move loses. These games were introduced by Fraenkel and Kotzig in 1987, where they introduced the notion of dominance, i.e. an asymptotic behavior of the outcome sequence where Left always wins if the heap is sufficiently large. In the current paper, we investigate the other kinds of behaviors for the outcome sequence. In addition to dominance, three other disjoint behaviors are defined, namely weak dominance, fairness and ultimate impartiality. We consider the problem of computing this behavior with respect to $S_L$ and $S_R$, which is connected to the well-known Frobenius coin problem. General results are given, together with arithmetic and geometric characterizations when the sets $S_L$ and $S_R$ have size at most 2.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.