Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalized Spatio-Temporal RNN Beamformer for Target Speech Separation (2101.01280v5)

Published 4 Jan 2021 in cs.SD and eess.AS

Abstract: Although the conventional mask-based minimum variance distortionless response (MVDR) could reduce the non-linear distortion, the residual noise level of the MVDR separated speech is still high. In this paper, we propose a spatio-temporal recurrent neural network based beamformer (RNN-BF) for target speech separation. This new beamforming framework directly learns the beamforming weights from the estimated speech and noise spatial covariance matrices. Leveraging on the temporal modeling capability of RNNs, the RNN-BF could automatically accumulate the statistics of the speech and noise covariance matrices to learn the frame-level beamforming weights in a recursive way. An RNN-based generalized eigenvalue (RNN-GEV) beamformer and a more generalized RNN beamformer (GRNN-BF) are proposed. We further improve the RNN-GEV and the GRNN-BF by using layer normalization to replace the commonly used mask normalization on the covariance matrices. The proposed GRNN-BF obtains better performance against prior arts in terms of speech quality (PESQ), speech-to-noise ratio (SNR) and word error rate (WER).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.