Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Wasserstein barycenters are NP-hard to compute (2101.01100v2)

Published 4 Jan 2021 in math.OC, cs.CC, cs.DS, and cs.LG

Abstract: Computing Wasserstein barycenters (a.k.a. Optimal Transport barycenters) is a fundamental problem in geometry which has recently attracted considerable attention due to many applications in data science. While there exist polynomial-time algorithms in any fixed dimension, all known running times suffer exponentially in the dimension. It is an open question whether this exponential dependence is improvable to a polynomial dependence. This paper proves that unless P=NP, the answer is no. This uncovers a "curse of dimensionality" for Wasserstein barycenter computation which does not occur for Optimal Transport computation. Moreover, our hardness results for computing Wasserstein barycenters extend to approximate computation, to seemingly simple cases of the problem, and to averaging probability distributions in other Optimal Transport metrics.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.