Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Second-Order Nonlocal Approximation for Manifold Poisson Model with Dirichlet Boundary (2101.01016v4)

Published 4 Jan 2021 in math.NA, cs.NA, and math.AP

Abstract: Recently, we constructed a class of nonlocal Poisson model on manifold under Dirichlet boundary with global $\mathcal{O}(\delta2)$ truncation error to its local counterpart, where $\delta$ denotes the nonlocal horizon parameter. In this paper, the well-posedness of such manifold model is studied. We utilize Poincare inequality to control the lower order terms along the $2\delta$-boundary layer in the weak formulation of model. The second order localization rate of model is attained by combining the well-posedness argument and the truncation error analysis. Such rate is currently optimal among all nonlocal models. Besides, we implement the point integral method(PIM) to our nonlocal model through 2 specific numerical examples to illustrate the quadratic rate of convergence on the other side.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.