Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Differentially Private Mechanisms (2101.00961v1)

Published 4 Jan 2021 in cs.CR, cs.LG, and cs.PL

Abstract: Differential privacy is a formal, mathematical definition of data privacy that has gained traction in academia, industry, and government. The task of correctly constructing differentially private algorithms is non-trivial, and mistakes have been made in foundational algorithms. Currently, there is no automated support for converting an existing, non-private program into a differentially private version. In this paper, we propose a technique for automatically learning an accurate and differentially private version of a given non-private program. We show how to solve this difficult program synthesis problem via a combination of techniques: carefully picking representative example inputs, reducing the problem to continuous optimization, and mapping the results back to symbolic expressions. We demonstrate that our approach is able to learn foundational algorithms from the differential privacy literature and significantly outperforms natural program synthesis baselines.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.