Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Optimal adaptive testing for epidemic control: combining molecular and serology tests (2101.00773v1)

Published 4 Jan 2021 in eess.SY, cs.SY, math.DS, math.OC, physics.soc-ph, and q-bio.PE

Abstract: The COVID-19 crisis highlighted the importance of non-medical interventions, such as testing and isolation of infected individuals, in the control of epidemics. Here, we show how to minimize testing needs while maintaining the number of infected individuals below a desired threshold. We find that the optimal policy is adaptive, with testing rates that depend on the epidemic state. Additionally, we show that such epidemic state is difficult to infer with molecular tests alone, which are highly sensitive but have a short detectability window. Instead, we propose the use of baseline serology testing, which is less sensitive but detects past infections, for the purpose of state estimation. Validation of such combined testing approach with a stochastic model of epidemics shows significant cost savings compared to non-adaptive testing strategies that are the current standard for COVID-19.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.