Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cycle Registration in Persistent Homology with Applications in Topological Bootstrap (2101.00698v1)

Published 3 Jan 2021 in cs.LG, cs.CG, math.AT, and stat.ML

Abstract: In this article we propose a novel approach for comparing the persistent homology representations of two spaces (filtrations). Commonly used methods are based on numerical summaries such as persistence diagrams and persistence landscapes, along with suitable metrics (e.g. Wasserstein). These summaries are useful for computational purposes, but they are merely a marginal of the actual topological information that persistent homology can provide. Instead, our approach compares between two topological representations directly in the data space. We do so by defining a correspondence relation between individual persistent cycles of two different spaces, and devising a method for computing this correspondence. Our matching of cycles is based on both the persistence intervals and the spatial placement of each feature. We demonstrate our new framework in the context of topological inference, where we use statistical bootstrap methods in order to differentiate between real features and noise in point cloud data.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube