Solving Cut-Problems in Quadratic Time for Graphs With Bounded Treewidth (2101.00694v3)
Abstract: In the problem (Unweighted) Max-Cut we are given a graph $G = (V,E)$ and asked for a set $S \subseteq V$ such that the number of edges from $S$ to $V \setminus S$ is maximal. In this paper we consider an even harder problem: (Weighted) Max-Bisection. Here we are given an undirected graph $G = (V,E)$ and a weight function $w \colon E \to \mathbb Q_{>0}$ and the task is to find a set $S \subseteq V$ such that (i) the sum of the weights of edges from $S$ is maximal; and (ii) $S$ contains $\left\lceil{\frac{n}{2}}\right\rceil$ vertices (where $n = \lvert V\rvert$). We design a framework that allows to solve this problem in time $\mathcal O(2t n2)$ if a tree decomposition of width $t$ is given as part of the input. This improves the previously best running time for Max-Bisection of [DBLP:journals/tcs/HanakaKS21] by a factor $t2$. Under common hardness assumptions, neither the dependence on $t$ in the exponent nor the dependence on $n$ can be reduced [DBLP:journals/tcs/HanakaKS21,DBLP:journals/jcss/EibenLM21,DBLP:journals/talg/LokshtanovMS18]. Our framework can be applied to other cut problems like Min-Edge-Expansion, Sparsest-Cut, Densest-Cut, $\beta$-Balanced-Min-Cut, and Min-Bisection. It also works in the setting with arbitrary weights and directed edges.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.