Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Validated forward integration scheme for parabolic PDEs via Chebyshev series (2101.00684v2)

Published 3 Jan 2021 in math.NA, cs.NA, and math.DS

Abstract: In this paper we introduce a new approach to compute rigorously solutions of Cauchy problems for a class of semi-linear parabolic partial differential equations. Expanding solutions with Chebyshev series in time and Fourier series in space, we introduce a zero finding problem $F(a)=0$ on a Banach algebra $X$ of Fourier-Chebyshev sequences, whose solution solves the Cauchy problem. The challenge lies in the fact that the linear part $\mathcal{L} = DF(0)$ has an infinite block diagonal structure with blocks becoming less and less diagonal dominant at infinity. We introduce analytic estimates to show that $\mathcal{L}$ is an invertible linear operator on $X$, and we obtain explicit, rigorous and computable bounds for the operator norm $| \mathcal{L}{-1}|_{B(X)}$. These bounds are then used to verify the hypotheses of a Newton-Kantorovich type argument which shows that the (Newton-like) operator $\mathcal{T}(a)=a - \mathcal{L}{-1} F(a)$ is a contraction on a small ball centered at a numerical approximation of the Cauchy problem. The contraction mapping theorem yields a fixed point which corresponds to a classical (strong) solution of the Cauchy problem. The approach is simple to implement, numerically stable and is applicable to a class of PDE models, which include for instance Fisher's equation and the Swift-Hohenberg equation. We apply our approach to each of these models.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.